0-A191 706 INTEGRATED XNFDRHRTION SUPPORT SVSTEI (IlSS) VOLUNE 5
COMMON DATA MODEL S..<U) GENERAL E
SCHENECTADY NY PRODUCTION RESOURCES CO SU
UNCLASSIFIED T LOOMIS ET AL. 01. NOV 85 PRM-620141200

EEEE

FEEE

I= lls
E!EEEEE E

E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. . . AN, .y -~y - - et] —- PRpp R
RN K" LN n’ C . AR LY 3Ny A " "

:’v,ﬂ‘n,«’g A "n'..h '& u' '\ Mg ‘I' : ety ‘35 \) '0:,‘ o) :.,l “'\‘5‘:‘."\".'0‘

v 'z‘ \"'o'u

R

l.l.\ 6

.-‘,;.'é'.‘l‘\.f
fg 00
D-A181 706 o
o
!.;o
t{" +
AFVAL-TR-86-4006 M
Volume V PP
Part 8 R
o
é“'z“v‘ :..-‘ P
o), LXK
i
-") l':
1)
3
! Y
INTEGRATED INFORMATION KORSON,
SUPPORT SYSTEM (IISS) Q@t o3
Volume V - Common Data Model Subsystem PR
Part 8 - NDML Programme:’'s Reference Manual hﬂd“f
v o'k ;';;. .
;233,!3;1;? %
ANV
OS?";::;!:‘ X
¥ \";‘.!’{ 3
General Electric Company OR
Production Resources Consulting ®
One River Road a“ﬁhﬂf
Schenectady, New York 12345 :} ﬁ
EYLX) G ' Q‘l
iyt 0}7',
e
." .t‘(,“
l
Final Report for Period 22 September 1980 - 31 July 1985 uﬂ,ghﬁ
l
November 1985 ¢4

a»':w.sa"-*
,\2"' s
Approved for public release;: distribution is unlimited. “ t‘hl

|“ “‘O

,l
};.k" i, N
MATERIALS LABORATORY .,. ...f
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES i,
AIR FORCE SYSTEMS COMMAND ’ -
WRIGHT-PATTERSON AFB, OH 45433-6533 e
» .l| ...

L)

o]
N ',: :,.::.::
o

87 6 24 008 vy

ot o UG SR T T R TR G S S RS TE T WA St T W Ve oy 0y

NOTICE

When Government drawings. specifications. or other cata are used for any purpose other than
in connection with a defintely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the
government may have formulated. furnished. or in any way supplied the said drawings.
specifications. or other data, is not to be regarded by implication or otherwise &8s in any
manner licensing the holder or any other person or corporation, or conveying any rights or
permission 10 manufacture. use. or sell any patented invention that may in any way be related
thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
Nauonal Technical Informauon Service (NTIS) At NTIS. it will be available to the general
public, including foreign nations.

This technical repo;/has been reviewed and is approved for publication.

; Ao
DAYID L. /[JUDFON!/ PROJECT MANAGER DATE U

IGHT PATTERSON AFB OH 45433

FOR THE COMMANDER:

-
ARGy oy S 7 Qg $o
ERALD C. SHUMAKER, BRANCH CHIEF DATE ~

AFWALMLTC
WRIGHT PATTERSON AFB OHM 45433

"It your address has changed. it you wish to be removed from our mailing list, or it the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W-PAFB, OH
45433 to help us maintain a curmrent mailing list.”

Copies of this report should not be returmned unless return is required by Security consideratinne
contractual obligations, or notice on a specific document

.-.CU.WVCL':::-::"f::' Toul va0t /f/ yaé

REPORT DOCUMENTATION PAGE

ta ARPDAT SECURITY CLASSISICAYTION 1 ASTAICTIVE MAAKINGS
Onclassified
3 BECVAITY CLABSS:CATION AUTHORITY 3 DISTRIBUTIONAVAILABILITY OF ALPOAT

Approved for public release;

2 DICLASSISICATION/DOWNGAADING SCHEDULE distribution is unlimjted

S PEREOAMING ORGCANIZATION ALPORT NUMBERIS) 8. MONITORING ORGCANIZATION REPORT NUMBEAS!
AFVAL-TR-86-4008 Vol V, Part 8°

6a NAME OF PERFDAMING DRGANIZATION 0 OFSICE SYMBOL [7a NAME OF MONITORING DRGANIZATION
CIr applisedie) :
General ERlectiric Cospany AFY
Production Resources Consulting AL/MLTG
- 6. ADOALSS (Ciny. Siem ong ZIP Cone)) 5. ADDRERS (Ciry. Sum ane ZIP Cose:s
3 River Road
Scheaectady, NY 12348 WPAFB, OH 43433-8833
Ga NaME OF BUNDINGBPONEOAING . OFPICE BYMpBOL 0. PADCUREMENT INSTARUMENT IDENTIFICATION NuMBE AR
ononu‘xal'cou . Gl eppiadin)
Mat als Labdorator :
Ay r.;orco sSystens czln.nd. USAF AFVAL/MLYC 733618-90-C-8185
it ADOAESS City. St eng ZIP Cotn) 10 SOURCE OF SuUNDING NOS
PAOGAAM PROMCY TaSK WORK YNIT
Vright-Patterson ATB. Ohio €85433 SLEuENY MO ~o. &o. no.
- v8012F 0
tingivge Sstunty Classisstion) 780 62 o1
(See Reverse)

13. PEASONAL AUTHONS)

Loomis.T. Loomis . M. Althoff,J. Apicella. M.
13a TVPE OF REPOAT [13a YIME COVERSD 6. DATE OF REPORT (Vr. Ne., Duy/ 8. PAGE COUNT
Final Techaical Beport 82 Sept 1980 - 31 July 1908 1985 Novemoer a8
V8. SUPPLEMENTARY BOTATION The computar softvare contained herein are theoretical and/or

Teferences that in no way reflect Air Foroce-ovned or -develo
ICAM Project Priority 8201 oo 1er softvare. Y pod

€0saY: CODES 18.8UBJNCT TEAMS iCononur on murnw ¢ nssemer ond leadfy Oy bisch asmber/
gaoue gue g
000%

19. ABSTRACT (Connus 00 wegrae {f ascemery ond wien 8fy Oy dlocs aumber)

The Common Data Model Processor (CDMP) is a mechanism by which
application programs can retrieve and update data without knowing
where or how the data are stored. An application program poses
requests to the CDMP, which processes those requests against the
databases in which the relevant data are stored and then returns

—~Jd——lb

the results to the application program. The Neutral Data
. Definition Language (NDDL) is the means for posing requests to the
CDMP. This manual explains the syntax and semantics of each NDML
command. (7 P R 4 i)
L] »h
20 DISTRIPUTION/AVAILABILITY OF ABSTRACT 31 ABSTRACTY SECURITY CLASSIFICATION
uwcLass g0 Tad I saut as oor. Covicinens D Unclassified
23s hamt OF ALSPONS DLE INDIVIDVAL 325 T6.LEPwONE wu 23c OFFICE SYMOO.L
David L. Judson .,,_‘;’;‘5_“;5 ATVAL/MLTC
O0 FORM 1473, &3 APR EDITION OF 14an 73 18 DBSOLETE. Onclassified

SECURITY CLASS P ICATION OF ThiS PaGE

I T P YUl P

11. Title

Integrated Information Support System (IISS)
Vol V -~ Common Data Model Subsystem
Part 8 - NDML Programmer's Reference MNanual

A S D 86 1478
17 Jul 1986

Accesion For

NTIS CRA&!
DTIC TAB ° O
Unannounced O

Justification

temiesctedenneansemac ey-snmeond

BY o
Dist-ibution]

Avaitability Codes

“Avail and]or
Special

n L,.w._ '

Dict

LOUOLU AN RO
RN AL I AN

L)
R DO X D N i D e e R S R T AL ¢ e N e T A ST S T Y

PRM620141200
1 November 1985

PREFACE

This programmer’'s reference manual covers the work
performed under Air Force Contract F33615-80-C-5155 (ICAM
Project 6201). This contract is sponsored by the Materials
Laboratory, Air Force Systems Command, Wright-Patterson Air
Force Base, Ohio. It was administered under the technical
direction of Mr. Gerald C. Shumaker, ICAM Program Manager,
Manufacturing Technology Division, through Project Manager, Mr.
David Judson. The Prime Contractor was Production Resources
Consulting of the General Electric Company, Schenectady, New
York, under the direction of Mr. Alan Rubenstein. The Gene~al
Electric Project Manager was Mr. Myron Hurlbut of Industrial
Automation Systems Department, Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer.
Company (BMAC)

D. Appleton Company Responsible for IDEF support,

(DACOM) state-of-the-art literature
search.

General Dynamics/ Responsible for factory view

Ft. Worth function and information
models.

T A A TN Y it Y

Subcontractors

Illinois Institute of
Technology

North American Rockwell

Northrop Corporation

Pritsker and Associates
SofTech

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors
Boeing Military Aircraft
Company (BMAC)

Computer Technology
Associates (CTA)

Control Data Corporation
(coe)

D. Appleton Company
(DACONM)

PRNB820141200
1 November 19835

Role

Responsible for factory view
function research (IITRI)

and information models of
small and medium-size business.

Reviewer.

Responsible for factory view
function and information
models.

Responsible for IDEF2 support.
Responsible for IDEFO support.

Role

Responsible for consultation on
applications of the technology
and on IBM computer technology.

Assisted in the areas of
communications systems, system
design and integration
methodology. and design of the
Network Transaction Manager.

Responsible for the Common Data
Model (CDM) implementation and

part of the CDM design (shared

with DACOM).

Responsible for the overall CDM
Subsystem design integration
and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOM also

developed the Integration
Methodology and did the schema
mappings for the Application
Subsystenms.

Subcontractors

Digital Equipment
Corporation (DEC)

McDonnell Douglas
Automation Company
(McAuto)

On-Line Software
International (OSI)

Rath and Strong Systems
Products (RSSP) (In 1985
became McCormack & Dodge)

SofTech, Inc.

Software Performance

Engineering (SPE)

Structural Dynamics
Research Corporation
(SDRC)

PRM620141200
1 November 1985

Role

Consulting and support of the

performance testing and on DEC
software and computer systems

operation.

Responsible for the support and
enhancements to the Network
Transaction Manager Subsystem
during 1984/1985 period.

Responsible for programming the
Communications Subsystem on the
IBM and for consulting on the
IBM.

Responsible for assistance in

the implementation and use of

the MRP II package (PIOS) that
they supplied.

Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Responsible for directing the
work on performance evaluation
and analysis.

Responsible for the User
Interface and Virtual Terminal
Interface Subsystenms.

Other prime contractors under other projects who have
contributed to Test Bed Technology, their contributing
activities and responsible projects are as follows:

ICAM Pro ject

Contributing Activities

Contractors
Boeing Military 1701,
Aircraft Company 2202

(BMAC)

2201,

Enhancements for IBM
node use. Technology

Transfer to Integrated
Sheet Metal Center
(ISMC).

Contractors

Control Data
Corporation (CDGC)

D. Appleton Company
(DACON)
General Electric

Hughes Aircraft
Company (HAC)

Structural Dynamics

Research Corporation
(SDRC)

Systran

ICAM Project

1802,

1802

1502

1701

1502,

1703

1802

1701

1701,

vi

PRMB20141200
1 November 1985

Contributing Activities

IISS enhancements to
Common Data Model
Processor (CDMP).

IISS enhancements to

Integration Methodology.

Operation of the Test
Bed and communications

equipment.

Test Bed enhancements.

I1SS enhancements to
User Interface/Virtual
Terminal Interface
(91/VT1).

Test Bed enhancements.
Operation of Test Bed.

<t e Vg AT il OCr, OO | AN SR o) e ; > A - ;
R A N L T S A I TR eI VA SR OO M SO S o A P VAT i P i A T i !

S R T B L G A

o T

-

S " G T e w

PRM620141200
1 November 1985

TABLE OF CONTENTS

Page
. SECTION 1.0 INTRODUCTIONciecenennn.. 1-1
SECTION 2.0 . SYSTEM OVERVIEWccvueunvn.. 2-1
SECTION 3.0 ML COMMANDS0c0.n. 3-1
3.1 Data_ReLrjevalmgomnand5> 3-2

3.2 g:,DELETEthEmand LT e 3-14

3.3 ~’,,INSE Command,y.itiennnnnn. 3-16

3.4 - IFY Command, y.................... 3-20

3.5 Transaction C ds 000 3-23

3.5.1 Begin saction Command 3-23

3.5.2 Undt and Rollback Commands 3-23

3.5.3 ~ “COMMIT Command 3-23

3.6 "Embedding NDML in COBOL 3-24

3.7 Embedding NDML in FORTRAN 3-25

3.8 Loop Comstruct >y 3-26

3.8.1 When a,Loop/é%nstruct Is Needed .. 3-26

3.8.2 Number and Type of Data Fields ... 3-26

3.8.3 Syntax ittt 3-27

3.8.4 NDML Loop Control Statements 3-27

3.8.5 Evaluation 3-2%

i
SECTION 4.0 NDML PROCESSINGcc0cuennnn 4-1
4.1 IISS Precompiler Overview 4-1
4.2 Example of Precompiling and

_Executing Application Pr£§§§?> 4-2

4.3)BOL. Reserved Names and 4-12

4.4 <5FORTRAN Reserved Names and- bLabels, .. 4-12
APPENDIX A BNF OF THE NDML /5.. A-1
A.l Conventions L.... A-1

. A.2 NDMI. Backus-Norma)l Form (BNF) A-2
APPENDIX B COBOL EXAMPLE PROGRAM B-1
] APPENDIX C FORTRAN EXAMPLE PROGRAM C-1
APPENDIX D REFERENCESc0utitiiennnnennnn D-1

vii

QTR oy SO AL I BT I BT Qs Ly ;a:e.'ai

Figure
4-1

4-4

4-5

PRM620141200
1 November 1985

LIST OF ILLUSTRATIONS

Title Page
Execute Precompiler 4-3
Precompiler Application Process

Responses (COBOL) 4-4
Precompiler Application Process

Responses (FORTRAN) 4-5
Example Output 4-7

Execute Precompiled Application 4-11

viii

-

- o e

B Y 'y 3 O j P ¥ a4 3 ’ e T "w 3
N S O R A R AT A T M L N N P i e L =t i T e i O AT

PRM620141200
1 November 1985

SECTION 1

INTRODUCTION

The Neutral Data Manipulation Language, hereafter NDML,
was developed to provide access to the databases of the IISS
Testbed. The NDML allows one to work with the heterogeneous
distributed databases of the IISS Testbed as if they constituted
a single relational database.

It has been designed to provide as much functionality as
possible while attempting to be logical in application and
convenient. The NDML is intended to be used by both data
processing professionals and by manufacturing personnel who have
little knowledge of database systems.

The NDML is a language similar to SQL (Sequel) and Quel,
two well-known languages used to access relational databases.
The utility of the method of access provided by the NDML is
supported by extensive theory and practical tests of these
relational languages.

The NDML is designed for use either as a stand-alone
language or as embedded statements in the host languages of
COBOL or FORTRAN. Currently, only embedded statements are
supported and this manual applies only to embedded NDML. The
NDML examples in the command descriptions of this manual neglect
the embedding characters (*# for COBOL or C# for FORTRAN) for
simplicity, but their use is shown in succeeding sections.

When stand-alone requests are supported, deviations from
the embedded language will be as few as possible. The
differences are due mainly to the requirement that a retrieved
table be presented to host programs a row at a time, while the
entire table can be presented in response to a stand-alone
request from an interactive user.

The IISS Precompiler should process the application program
containing embedded NDML statements before the host language
(COBOL or FORTRAN) compiler is used. The host language compiler
can be used first to debug host language statements, but the
NDML precompile step must precede host-language compilation
before executable object code is produced. The use of the
Precompiler is described under "NDML Processing” in Section 4.

The important property of the NDML to keep in mind when

1-1

T
B L S

L Wet gnn o e kpl <. gt Wal €z’ ¥ai Re- $e Bat . Bat Sav pat e i Bac Gat gat 3t iatgat aah 9t gat hat et Wat Bal Aatalataha VAt iat e et hat Vet et atpi Vet 0 aWet Ng ok,

PRM620141200
1 November 1985

using this manual is that the user perceives all "data” to be in :
the form of tables. Data within the database can be considered .
to be stored as tables even if containing only one row of

values. Similarily, only tables can be retrieved from the

database, even if the table consists of a single "row" with a

single "column” (i.e., only a single value). This important

property of relational databases allows the output of one

retrieval command to be utilized as the input to another :
operation without worrying about the structure of *‘ e data.
Furthermore, “chunks” of data can be retrieved and used without
having to specify the structure of the data for each application
and the sigze of the data chunk.

Tables are usually called "relations” and the terms table)
and relation will be used synonymously here. Similarly, rows of
the table may be called "records”™ or “"tuples” and columns may be 3
called “"data fields"”, "data items"” or "attributes". An ‘
individual number or character string entry in the table will be
called a "value".

Each of the following sections on specific commands begins
with the syntax of the command. The syntax is presented using a
method that is described at the beginning of Section 3; it is
similar to the method used in the NDDL manual. The rigorous BNF
description of the language is presented in an appendix.
Following the syntax of the command, semantic notes point out ¢
conflicting commands and restrictions that are not supported by
the system. These sections should provide sufficient ’
information for the professional user to begin work. Moreover, ﬂ
the nev user will find them an appropriate reference in the
future wvhen he or she has become familiar with NDML.

New users unfamiliar with SQL will want to consult -
tutorials and references on that language before using this
guide.

References include:

Chamberlin, D.D. et. al., "Sequel 2: A Unified Approach to .
Data Definition, Manipulation, and Control," IBM Journal

of Research and Development. Vol 20, No. 6, Nov. 1976, pp.
560-575. .

Date, C.J., A Guide to DB2. Addison-Wesley Publ. Co.,)
1984 .

In addition, many commercial relational database systems

1-2 g

P oy]

R}

»
e,

e,) IR A Y S PRSI Dy RE N ',4-,- GNP Ly r: o Ca T

Jont W

PP ts g
%I T N Ty

PRM620141200
1 November 1985

offer SQL-like interface languages. The manuals for these
languages are useful for becoming acquainted with the gemeral
¢ syntax of SQL.

S Rt : A ~ - » et an .y -
0 an e Y Y T T TN, WO R Y N 4% ‘1"’0 ¥ .'o‘o‘l‘. l’nl'v v Ly * AR 1n

PRM620141200
1 November 1985

SECTION 2

SYSTEM OVERVIEW

The processing system is known as the Common Data Model
Processor(CDMP). The CDMP provides the application programmer
with important capabilities to:

e Request database accesses in a non-procedural data
manipulation language (the NDML) that is independent of
the data manipulation language (DML) of any particular
data base management system.

® Request database access using a NDML that specifies
accesses to a set of related records, rather than to
individual records (i.e., using a relational DML).

e Request access to data that are distributed across
multiple databases with a single NDML command, with
minimum knowledge of data locations or distribution
details.

Information about external schemas, the conceptual schema
and internal schemas (including data locations) are provided by
CDMP access to the Common Data Model (CDM) database. The CDM is
a relational database of metadata pertaining to IISS. It is
described by the CDMl information model using IDEFl. The
Precompiler parses the application program source code,
identifying NDML commands. It applies external-schema to
conceptual-schema and conceptual-schema to internal-schema
transforms on the NDML command, thereby decomosing the NDML
command into internal-schema, single atabase requests. These
single database requests are each transformed into generic data
manipulation language (DML) commands. Programs are generated
from the generic DML commands which can access the specific
databases to accomplish the request. These programs, referred
to as Request Processors (RP), are stored at the appropriate
host machines. The NDML commands in the application source
program are replaced by host-language code which, when executed,
activates the run-time request evaluation processes associated
with the particular NDML command.

The Precompiler also generates a CS/ES Transformer progran
which will take the final results of the request, stored in a

file as a table with external-schema structure, and convert the
data values into the correct form for presentation. The CS/ES

2-1

AN R AT I e |
o Sl i I L W W o WA

s.up da aipt i g fa Lt gl O3 Vh 'tk gt gt R i gV aTh g0 T 0 g D TRt il O Py e

PRM620141200
1 November 1985

Transformer also performs NDML function operations on the data.

Finally, the Precompiler generates a Join Query Graph and
Result Field Table which are used by the Distributed Request
Supervisor (DRS) during the run-time evaluation of the NDML
at request .

FOR—

- e -

- -
LT
P

The DRS is responsible for coordination of the run-time
activity associated with the evaluation of an NDML command. It
is activiated by the application program, which sends it the
names and locations of the query processors to activate along
with run-time parameters which are to be sent to them. The
v results generated by the query processors are stored as files in
the form of conceptual-schema relations on the host which
executed the query process. Using the Join Query Graph,
transmission cost information and data about intermediate
results, the DRS determines the optimal strategy for combining
the intermediate results of the NDML command. It issues the
appropriate file transfer request, activates aggregators to
perfora unions, joins, and NOT IN SET operations, and activates
the appropriate CS/ES Transformer program to transform the final
results. Finally, the DRS notifies the application program that
the request is completed, and sends it the name of the file
which contains the results of the request.

Tl
PN

v
T 7.

e .

T

rd‘-'-

- an e -

- a e

-

The Aggregator is activated by the DRS. An instance of the
Aggregator is executed for each union, join, and NOT IN SET
" operation performed. It is passed information describing the
Q operation to be performed and the file names containing the
" operands of the operation. The DRS ensures that these files
' already exist on the host which is executing the particular
g Aggregator program. The Aggregator performs the requested
operation and stores the results in a file whose name was
specified by the DRS.

- -
LS D

o e -

R
- - - -

1
"

'y D v | o* ¢ T T ™ WP ATt T A TR, ” "t s ™ s " m A Wt AN
R M O A M T U % T SR = W LIRS TSENTN AT RIS

A «

PRM620141200
1 November 1985
SECTION 3
. NDML COMMANDS
The following conventions are used in the description of
the NDML commands at the beginning of the following sections.
Notation
UPPER CASE WORDS denote keywords in the command

LOWER CASE WORDS denote user-defined words (entered in
upper case)

{)} denotes that exactly one of the options within the
braces must be selected by the user

...denotes repetition of the last element

[1 denotes that the entry within the brackets is
optional

! denotes an "or" relationship among the entries

denotes default option

Punctuation

The only punctuation allowed is:

(1) a "." to separate the table-label (.e., table
alias) from the column-name. The table-label is
used to match a column to a specific table in the
list of tables referenced in the FROM clause,

v (2) a ":" before the name of a host-language program
variable, structure or file name that will receive
returned values,

. (3) a "," between entries in the list of tables in a
FROM clause,

(4) a "," between subscripts to an array variable,

(5) a set of parentheses to enclose the column-list in
an INSERT statement,

(6) a set of parentheses to enclose the object column
of a function,

(7) a set of parentheses to enclose the values to be

3-1

”

3ITa X WA Lot M Ca T ¥ ¥ o T
A R I O A I O T AT I L U O X A Co Tt C i T <A !u\! U , Rk e e "‘-"" NN

@t
EAa

,‘\

N A e -

f g #°y 0 b Noo€ 5 8 -4 N KR

PRM620141200
1 November 1985

inserted in an INSERT statement,
(8) a set of parentheses to enclose a program variable .
subscript list,
(8) a mandatory ";:* or "loop-construct” (see the
section: LOOP CONSTRUCT) at the end of the
command .

Character Case

Only upper-case letters are recognized by the NDML
Precompiler.

Word Length
Table labels are limited to 2 characters.

Table and column names are defined by the relational
view in use.

3.1 Data Retrieval Commands

Syntax of Command

Data are retrieved from the database using the SELECT
command. The command has the following syntax:

SELECT [WITH { EXCLUSIVE } LOCK]
{ SHARED }

{ NO }
[INTO { FILE 'file-name’ }]
{ FILE ':variable-name’ }
{ STRUCTURE :variable-name }
[DISTINCT]

{ (table-label] ALL

{ expr-spec ...

{ :variable-name [(subscript, ...)] = expr-spec .
FROM table-name [table-label], ...
[WHERE predicate-spec [AND predicate-spec ...]]
[?RDER BY colunn-s§ec {direction] ...]

{ loop-construct }

.
St Vet St

wvhere:

file-name and variable-name are defined in the host

3-2

e A AT ¥ DAL B Ty, ¥ ’ MR RLLY %y 1, WY A e AT - i
SAAE R A WS N Y 0 i G aa n Vu Ve a Vi n O et 08 T D VNG NOATATSENR SO U

PRMG620141200
1 November 1985

program,
table-label is a one- or two-character name,

table-name and column-name are defined for the relational
view,

value is: a scalar variable | a quoted variable | a number
in the host program

/ \
direction is: | ASC |
} DESC]
<« ASCENDING »
| DESCENDING |
| UP |
| DOWN |
\ /
/ \
expr-spec is: | column-spec]
| / \ | ~
| | AVG | ([DISTINCT] column-spec) | f
| | MEAN | ! !
< « MAX > N ‘:
I | MIN I I i
I | SUM I I .
i I COUNT | I
\ \ / /

column-spec is: { column-name }
table-name.column-name)}
{ table-label.column-name)}

/ / \ \

predicate-spec is: | column-spec | = | value |

.] It |
| < > > |

! I = | |
* ¢ | ¢ | >
t | <= | |

| \ / |

| i

| column-spec { = } column-spec |

[{ =) !

\ /

3-3

% ™

N ” R 1 A i L ¥ F X . ¥ e g . N M Y
O O N O N O OGSO D D TN A A M A WA IS T s JOR ST N A.o?'.o ALY X N Cu X X .-. Ko Wl W S W WA

R » " N R Lo f o i c g b'a ¥ B 85 8 £0.0

PRM620141200
1 Rovember 1985

loop-construct is a l1ist of program and (or) NDML
statements enclosed in parentheses for the purpose of
transferring retrieved values to program variables

Comments o
(a) SELECT Keyword

The SELECT command is the only command used in NDML to
retrieve data from the distributed database. This keyword must ,
be the first word in the command. X

(b) LOCK Phrase

A lock limits access to specific rows of tables while a
transaction is being processed to prevent alteration of them
during the transaction. A lock is owned by the transaction in
wvhich the SELECT statement occurs. An EXCLUSIVE lock denies \
access to all rows accessed by the transaction to all other
processes. In addition, a request by any other transaction for
any type of lock on the row will be caused to wait until the -
EXCLUSIVE lock is released. An EXCLUSIVE lock is normally used
only when using an update command on a row, but might be needed
in a SELECT request in a transaction to ensure that no other
transaction can obtain a lock on the row. A transaction issuing
a SELECT request may need to lock a selected row if it intends 0
to update the row based on values retrieved earlier. "

A SHARED lock also locks rows but allows other transactions
to also lock a row. A SHARED lock is normally used in a SELECT
command to ensure that a row is not changed by a contemporary
MODIFY or DELETE transaction that must obtain an EXCLUSIVE lock
to perform its function.

If no type of lock is specified in a lock-request, a NO y
lock is assumed unless the SELECT falls within an explicitly ;
specified transaction. For example, TN

BEGIN TRANS

COMMIT/UNDO;

\

0

N

causes a SHARED lock to be requested automatically. 4
.!

The lock placed by a transaction depends on the .
implementation of locks in the particular database systems of J
the internal schema. The lock placed on the data in the internal

PRM620141200
1 November 1985

schema by the local database manager usually locks either (1)
only the accessed record or (2) the entire accessed table,

. depending on the local database. A "LOCK TABLE" command that
will ensure that an entire table, rather than just a record, is
locked is not provided in NDML at present. A user should assume

. that only each record accessed is locked.

(c) INTO Phrase and Variable Assignments

The data retrieved by a SELECT command can be either (1)
Placed into a file or program structure with the INTO phrase or
(2) assigned to program variables using a variable-assignment
construct.

The file name can be specified by using the keyword FILE
and enclosing the file name in single or double quotes. 1If a
colon is not the first character following the first quote, then
the literal contents of the quoted character string will be
taken to be the name of the file. If the first character
following the first quote is a colon, then the rest of the
character string will be taken to be the name of a program
variable, the contents of which is the name of the file.

If the name of the file is quoted, the user should not
supply the COBOL SELECT or FD layout for the file; the
Precompiler will generate these and the internal file name. The
file can be accessed by the application program by opening it,
reading it into a working storage area and then closing it.

If the file name is contained in a program variable, the
Precompiler will generate code to write it as an external file.
To access the file, the appropriate code must be present to read
an external file, including COBOL SELECT and FD statements.

The entire result of the SELECT will be placed in the file,

one row per record, in the order normally produced by the SELECT

. command. A loop-construct should not be specified when the INTO
phrase is used to place results in a file.

. A structure is indicated to receive the retrieved data by

| the keyword STRUCTURE followed by a space, a colon and the

: program name of the structure. The defined data types for the
fields in the structure must agree exactly with those for the
corresponding column. For a structure target, only the first
row returned will be placed in the target unless the application
program contains code for a loop-construct following the SELECT
command. The syntax of the loop-construct is described in a

3-5

<" Y [T LT ¢ W ' - R e mAv - . -
~ DORLMLIAN TN M Moy t“.‘ "A'J!‘ Bal m\ Wy .'.-. .v "\‘. . Bl .(%*. ‘(. .. N v -'..'.\‘.\'-\{ h

¢ " - -« .1
BURCRANA OO OO0

TR N TR T L A AT AN AN KT R RN LN) R LK AR sad vatoeptata 01 2%k ath a'8 et ALy

PRM620141200
1 Novemker 1985

separate section below.

The alternative to the INTO phrase is to assign retrieved
data directly to program variables. If a variable name is
specified for a column, it is assumed that the defined data type
for the variable agrees in type exactly with the type of the
column in the external-schema view accessed by the NDML command.
Subscripted variables can be used as variables to receive data.
Only the first rov returned will be placed in the target unless
the application program contains code for a loop-comstruct
following the SELECT command. The syntax of the loop-construct
is described in a separate section below.

If neither a file, a structure, nor variables are specified
to receive the result of the select command in embedded NDML in
an application program, the Precompiler will reject the NDML
SELECT statement. Thus, an assignment of retrieved columns to
program variables or an INTO clause must be specified, but both
cannot be specified. Also note that if ALL is specified for \
columns, an INTO phrase must be specified. :

The following are examples of valid SELECT statements. }

D.DNO D.DNAME D.DLOC D.DSIZE
FROM DEPT D
ORDER BY D.DNO;

SELECT INTO STRUCTURE :DEPT-STRUCT ‘
D.DNO D.DNAME D.DLOC D.DSIZE !
FROM DEPT D
ORDER BY D.DNO :
loop-construct A

SELECT :DEPTNO = D.DNO :DEPTNAME = D.DNAME
:DEPTLOC = D.DLOC :DEPTSIZE = D.DSIZE
FROM DEPT D
WHERE D.DLOC != ‘'LAX’
loop-construct

SELECT INTO FILE 'DEPT-FILE’ :
t
i

% "

(d) SELECT DISTINCT Phrase

The DISTINCT clause on a SELECT statement is used to
specify that duplicate rows are to be removed prior to)
presentation of the results. Omitting the DISTINCT clause W
implies that duplicate rows are not removed.

The DISTINCT phrase refers to the entire set of selected
columns following it. For example, SELECT DISTINCT ALL FROM Tl

3-6

A OO0 >, 1, - TR T AT T R ATt N e N W e N T e e e
OO T T O O O N A e S R G DI W WA AW W RS, o ea AN BN

.......

PRM620141200
1 November 1985

removes only those rows from Tl for which all column values
are identical to those of another row in Tl. The DISTINCT

. processing is applied to rows in their external-schema formats.
‘ SELECT INTO FILE 'FILE-NAME' DISTINCT ALL
FROM DEPT D

WHERE D.IOC = 'LAX’;
SELECT INTO FILE ‘FILE-NAME' DISTINCT
D.DNO D.DNAME D.LOC
FROM DEPT D
WHERE D.SIZE = 'LARGE’;

(e) Restrictions on Column Specifications

Only columns from a table can be specified; quoted literal
data to be duplicated in a column are not allowed, but can be
introduced easily by the application programmer. Arithmetic
expressions involving column data are also not supported; they
can also be implemented easily directly in the application
program. For example, the following commands are not supported:

SELECT INTO FILE 'FILE-NAME’
EMP ' IS IN DEPARTMENT ' EMPDEPT
FROM EMP;

SELECT INTO FILE 'FILE-NAME'
"OVERHEAD IS ‘' 0.5 * AMOUNT
FROM CONTRACTS;

The column specification ALL indicates all columns of the single
table specified by the rest of the SELECT statement. The table
can be derived from a single table indicated in the FROM clause,
as (optionally) qualified by a WHERE clause. Alternatively,
multiple tables can be specified in the FROM clause if a join
operation is specified in a WHERE clause to combine them into
the single table required. Finally, a specific set of columns

. can be indicated by using a table-label to specify a particular
table in the FROM clause. For example, the following query is
not supported:

SELECT INTO FILE 'FILE-NAME' ALL
FROM TABLEl, TABLE2;

but the following queries are supported:

SELECT INTO FILE 'FILE-NAME' ALL

3~-7

LA X)) O ! o} f Wuy Y i WY . v
SO ‘,\".Q Y c".m s ‘,n'i,v" g“.-"’;’\ J. W o'l‘..l 0. l‘\ vl .'.‘.‘0 PN ."‘.‘l P P P ‘-' K ‘ i “ Nﬂ.’ \' f W ..

o »

Al CAAY
+ ¢

B
PN

4

A 2vg 3" ARSI A R I IR I I LYY

PRM620141200
1 November 1985

FROM TABLEl, TABLE2

WHERE TABLE1.CITY = TABLE2.CITY;
SELECT INTO FILE ‘FILE-NAME’ E.ALL

FROM EMP E, DEPT D

WHERE E.DNO =« D.DNO;

An important requirement that must be observed to use the
ALL column specification is that an INTO phrase must indicate
wvhere to place the results of the SELECT because individual
columns cannot be explicitly assigned to program variables in
this syntax. The number of data fields and data types in the
target structure or file must correspond to those of the
columns, as discussed in the section above on the INTO phrase.
The ALL specification is prone to error in embedded NDML because
the number and order of columns can change if the table is
reorganized. Note also that the ALL specification can refer to
only one table. If more than one table is specified in the FROM
clause, the appropriate table to which the ALL designation
applies must be indicated using a table-label.

(£) Statistios Functions

Function expressions can be presented as the result of a
SELECT statement only: they cannot be used in a WHERE or ORDER
BY clause. These functions are used to specify that column
statistics of AVG value, MAX value, MIN value, SUM value or
COUNT of rows are to be produced. AVG and MEAN are synonyms.

The results of AVG (column) are the same as the results of
SUM(column)/COURT(column). All values are considered unless the
optional DISTINCT phrase within the function clause is included,
in wvh.ch case duplicate values are removed prior to the function
application.

SELECT cannot return both a table and the result of
functions in a single statement. Thus, if one function is
specified in an expr-spec, then all values to be retrieved must
be the result of functions. It is permissible to retrieve the
results of several functions, but the user should be aware that
the values in the single row returned will not necessarily have
any logical relationship.

MIN, MAX and COUNT can be applied to both numeric and
string columns. AVG, MEAN and SUM can be applied only to
numeric columns. Functions are applied to columns in their
external -schema formats. Statistic functions ignore nulls in
the data. For the empty set, COUNT returns gzero and other

3-8

DA Q%% JOCOQ . ¥ s vy ' ' X
A O A AT L S N S L N A I RS SO S D HIL A U g T, g, T Tty Oy, Tl PO T R AL

XL R

PoadPoag™ad—~ar

e

3

~maet%

- s . ‘ : .. e v .
IR R LN RN N A N G N G A AN N X N P N A A AS AC oN, PCN CAG W WR BT T,

PRM620141200
1 November 1985

functions return an undefined result; the existence of the empty
set for non-COUNT functions results in a condition code set in
NDML-STATUS, as discussed below.

The ORDER BY clause should not be used when functions are
specified because unnecessary processing will be performed (the
system may not allow the clause to be specified). Specification
of function DISTINCT before MIN or MAX is ignored. Functions
cannot be used in a WHERE clause because the result of a
function is a property of a group of rows rather than of each
row. A SELECT DISTINCT specification should not be used with
functions because it causes unnecessary processing.

The formats of function results in COBOL are the following:
AVG, MEAN and SUM: S9(9)V9(9); COUNT: S9(9). The formats of
function results in FORTRAN are the following: AVG, MEAN and
SUM: F20.9; COUNT: I10. The number of rows returned by the
request is contained in the variable NDML-COUNT generated into
the application program by the Precompiler; obviously, it will
al ways have a value of one for function requests. The variable
NDML-STATUS (or NSTATS in FORTRAN) generated into the
applications program contains a code that indicates the success
or failure of the request. An all zero code indicates
successful completion; another code indicates an error. 1If a
function operates on an empty column, 2 result may be returned
that is not really valid (for example, SUM will return 0.). The
NDML-STATUS flag should be checked by the application program
before using the result returned by a function. A full list of
error codes is not available at this writing.

User-defined functions and explicit arithmetic functions
(e.g., WEIGHT * 2.2) are not supported in this release.

SELECT INTO FILE 'FILE-NAME'’
AVG(P.LEAD-TIME) MIN(P.LEAD-TIME) MAX(P.LEAD-TIME)
FROM PART P
WHERE P.SIZE > 100;
SELECT INTO FILE 'FILE-NAME' COUNT(D.DNANME)
FROM DEPT D, EMP E
WHERE E.DNO = D.DNO;
SELECT INTO FILE ‘FILE-NAME'
MIN(SE.SALARY) MIN(HE.RATE)
FROM SALARIED-EMP SE, HOURLY-EMP HE;
SELECT INTO FILE 'FILE-NAME' COUNT(DISTINCT E.JOB)
FROM EMP E
WHERE E.DNO = 10;
SELECT INTO FILE ‘FILE-NAME' COUNT(DISTINCT D.LOC)

PRM620141200
1 November 1985

FROM DEPT D, NEVWDEPT N
WHERE D.NAME = N.DNAME;

(g) FROM Clause

Table labels or table names may or may not be required by
the syntax of the particular request. If two or more tables are
specified in the table-list, it is a good idea to be concise and
use table labels or table names to designate columns. When a
table is joined with itself, it is necessary to use table labels
to distinguish columns.

(h) WHERE Clause

The WHERE clause is used to limit the information returned
from one or more tables. If the WHERE clause is not specified,
all rows from the first table indicated in the table-list are
returned (additional table names are ignored).

Only column-predicate or join-predicate comparisons are
allowed in WHERE clauses. The column-predicate compares the
value of a column with a single specific value indicated by the
contents of a scalar program variable, a literal string in
quotes, or a number. Either the column name or value can be the
first object of the comparison (only the case in whica the value
is second is shown in the syntax above). AND clauses can be
used to specify multiple qualifications on the table selected:
however. an "OR" capability is not implemented at this time.

The comparison operator (bool-op) includes most common
operations but does not include an "IN" comparison that would
allow a column to be compared with many values.

The absence of an "IN" bool-op and "OR" clauses restricts
the adbility to specify alternative qualifications on the
selected table. 1In this release, multiple SELECT requests must
be issued to retrieve all the information if a column can have
more than one value of interest. The NDML command can easily be
placed within a user-defined program loop within an application
program. Consequently, subqueries, in which the comparison
values are returned by another SELECT request, are not
supported because more than one value can be returned by the
subgquery. Other possible comparison operators not supported
include EXISTS, ALL and ANY.

Note that changing the contents of a program variable
within the "loop-construct” of the SELECT command will have no
effect on the result because the query has already been executed

- @ -

PRM620141200 i
1 November 1985

before the loop-construct is activated. A loop-construct is)
used only to transfer data from a completed SELECT query to '

N program variables or to a structure. The loop-construct is !
described in detail in the section “"LOOP CONSTRUCT" below.

. Supported Query:

SELECT INTO FILE ‘'FILE-NAME' DNO DNAME q
FROM EMP ’
WHERE DTYPE = ’'SALES’

AND DLOC = ’‘SOUTH’ ;

Unsupported Queries:

SELECT INTO FILE 'FILE-NAME' DNO DNAME
FROM DEPT
WHERE DNO IN
(SELECT DNO
FROM LOCATION .
WHERE DEPTLOC = 'LA’); y

SELECT INTO FILE 'FILE-NAME' DNO DNAME
FROM DEPT
WHERE DSIZE = ’'SMALL’
OR DSIZE = 'MEDIUM’;

- S S PP

The join-predicate comparison allows only the equijoin (=)
and NOT IN SET (!=) operations; the operators <, ¢=, > and =>
are not implemented. The join fields compared in a join or NOT
IN SET operation need not have identical data types in the)
user’'s (external) view of the table, except that numeric data b
must be compared with numeric data and character strings with
character strings. All data will actually be compared in
conceptual -schema format.

The equijoin connects a row from each of two tables to form
one row in the result table if the values in the specified
columns in the tables are identical. Duplicate rows will be
returned if duplicate rows exist in either table. Rows for

. which a match are not found are not included in the result
table.

»» 3 " w

The NOT IN SET operation is a selection procedure that by
eliminates each row from the first table for which the value in
the specified column is found in any row in the specified column W
in the second table. In other words, the NOT IN SET operator is 9
used to select all rows of a table where the value of a certain

R R R S R Iy CaB ua® Upl eeh b2l SaATVaR $20 620" 08 § ' ,8" 18"h 0" 3.5° V2"t

PRM620141200
1 November 1985

column is not equal to any value in a given column in another

table. The order of the columns in the NOT IN SET predicate is .
significant. For example the following two requests yield

different results: :

SELECT INTO FILE 'FILE-NAME' D.DNO D.DNAME
FROM DEPT D, EMP E
WHERE D.DNO != E.DNO;
SELECT INTO FILE ‘FILE-NAME' E.DNO E.NAME
FROM DEPT D, EMP E)
WVHERE E.DNO != D.DNO;

If the following data are found,

D.DNO E.DNO :
1 2]

2 3

4 5
-] 6 y
7 8 3

8 9
\
the result of first example is, D.DNO g
. :3
7 :
and the result of second example is: E.DNO &
3 ~
pe)

9

Some columns cannot be specified in a WHERE clause because y
the column in the conceptual schema maps to non-normalized N
database :tructures in the internal-schema databases. In Y

particular, a conceptual-schema column that maps to a data field
in a repeating group in the internal database will not have a
unique value for each row. The Precompiler should recognize
this problem and reject the NDML request. The user can .
determine these restrictions before precompilation only by)
examining conceptual-internal schema mapping relationships. i}

-
-

(i) ORDER BY Clause
The ORDER by clause is used to specify the sequencing rules

for presentation of the results of a SELECT operation. Omitting Q
the ORDER by clause on a SELECT statement implies that the rows

3-12

o1 3
. 3

A" - o A S A U AL M i N L e - - e LN Ly AL e
BRI AN RN TR PR JCANTE 2o e DO T T i S TR RN T QO M S AT A R P s o N

w. ———

PRM620141200
1 November 1985

of the result table are presented in a systeam-determined order.

. The columns in the order-spec-list control the sorting of
result rows in major-to-minor order. 1If the direction phrase is
omitted for a column, then ASC (ascending) is assumed. The

¢ columns of an order-spec-list need not all have the same
accompanying direction. Also, the columns need not appear in
the column-list of the SELECT phrase.

Sorting is done on the columns in their external-schema
formats and will be done on the machine running the application
program. The order of the sorted result will depend on the
storage code used by the computer running the applications
program. Thus, the result of the same program can differ if it
is precompiled and run on different machines. Note that ASC,
ASCENDING and UP are equivalent and that DESC, DESCENDING
and DOWN are equivalent.

SELECT INTO FILE 'FILE-NAME' E.NAME E.DEPT E.PHONE
FROM EMP E
WHERE E.JOBCODE > 50
ORDER BY E.NAME;
SELECT INTO FILE 'FILE-NAME' PART# SIZE
FROM PART
ORDER BY SIZE DESCENDING;
SELECT INTO FILE 'FILE-NAME' D.DEPT# D.LOC D.CITY
FROM DEPT D
ORDER BY D.CITY ASC D.LOC DESC D.SIZE ASC;

(j) Nulls

The effect of nulls in data are not sufficiently
established at this writing to describe the result for specific
operations. Because nulls are implemented in many ways in the
internal-schema databases, it is not advisable to depend upon a
particular response of the system to null data.

(k) Grouping Clauses
v This release does not support GROUP BY and HAVING clauses

to determine aggregate properties of multiple rows of a table.
These operations must be performed by the application program.

.

-'(‘- LY R) LI R

. . - e~ PP, AT M AT e . - “af PRI
RGN W ASGR l’h?"l"""t‘l“h’l. 'l.. v 050, ‘s'la6‘~ RN f ' < v ‘.‘ M\ W '. A, N V. %, W -

PRM620141200
1 November 1985

3.2 DELETE Command

Syntax of Command

The DELETE command removes rows from an external-schema .
table. The DELETE command has the following syntax:

DELETE FROM table-name [table-label]
[USING table-name [table-labell), ...
WHERE { ALL }
{ predicate-spec [AND predicate-spec ...] }

where:
table-label is a one- or two-character name,
table-name and column-name are defined for the relational
view, .
column-spec is: { column-name }
{ table-name.column-name)
{ table-label.column-name } ;
/ /A \
predicate-spec is: | column-spec | = | value I '
{ | = | i ‘
I S |
< <)y = b > *
| Lo | \
| [«= | | !
] \ / | X
| column-spec { = } column-spec | 0
| { -} |)
\ / !
Comments

(a) Locking

A DELETE command inside a transaction usually places a "key
lock”™ on deleted rows until a COMMIT command is encountered.
This lock ensures that another process cannot insert a row with)
the key of the deleted row until the DELETE action has been \
finalized by a COMMIT command. A DELETE command outside of a
transaction is usually committed immediately and no lock is .
used. Actual lock mechanisms depend on the internal-schema -
databases.

’
‘
) c"‘.t"'v'3..|" O k M Mg P M i X N MU D M e N

]

tr‘h.l',\»‘*,!‘ |th i| ';l

PRM620141200
1 November 1985

(b) USING Clause

The USING clause specifies tables that are accessed by the
WHERE clause to qualify the request. These tables are not to
have rows deleted from them. To be meaningful, tables indicated
in the USING clause must be related to the table on which the
DELETE command acts by a join-predicate.

(c) VWHERE Clause

The WHERE clause is used to specify which rows qualify to
be deleted. The WHERE clause is mandatory and the Precompiler
will reject the request if it is not present. If all the rows
of a table are to be deleted, the WHERE ALL clause should be
used. For selective qualification of rows, the WHERE clause has
the same power of expression as it does in a SELECT statement.
Note that this release supports only the AND connector between
qualifications in a WHERE clause.

Some columns cannot be specified in a WHERE clause because
the column in the conceptual schema maps to non-normalized
database structures in the internal-schema databases. 1In
particular, a conceptual-schema column that maps to a data field
in a repeating group in the internal database will not have a
unique value for each row. The Precompiler should recognize
this problem and reject the NDML request. The use can determine
these restrictions before precompilation only by examining
conceptual-internal schema mapping relationships.

(d) Mapping Restrictions

The external-schema table (the table the user views) must
map to one complete conceptual-schema entity class. This means
that a request to DELETE a row in a table in the user'’'s view can
be rejected by the system because other information that the
user is not (necessarily) aware of would also have to be deleted
in the conceptual-schema representation of the database. Thus,
it may be necessary to determine the conceptual-schema structure
and mapping to external views to formulate a correct DELETE
command to explicitly delete all the columns of a row in the
conceptual schema. In general, an effort should be made on the
part of the CDM designers and administrator to make this mapping
as simple as possible while still supporting the variety of
external views needed by users.

The entity class (in the conceptual schema) may map to just
part (or all) of one or more record types in the actual database

R U T S U WU R U L VU P P U U TPV U UL T R Y I U

PRM620141200
1 November 1985

(in the internal schema). If just part of a record type is
mapped to, that deleted part is filled will null-values and the
remainder is left as is; the designation of null values depends
on the particular database manager.

(e) 1Integrity Constraints

A request to delete a conceptual-schema entity that has
dependent entities will be rejected at runtime. Those dependent
entities cannot be left hanging; their existence depends on the
existence of the independent entity.

A future release may support DELETE WITH CASCADE, which
will delete any dependent entities associated with the specified
entity.

(£f) Null values

The specification of internal-schema null-values is DBMS
dependent. When the DBMS does not support nulls (as in the case
of TOTAL), all hyphens will be used in alphanumeric fields,
negative zero will be used in signed numeric fields, and zero
will be used in unsigned numeric fields.

(g) Exanmples:

DELETE FROM OFFER F
WHERE F.STATUS = ‘EXPIRED’;

DELETE FROM OFFER
WHERE ALL;

DELETE FROM OFFER F
WHERE F.STATUS = ’‘OLD’
AND F.DATE ¢« :CUT-DATE
AND F.TYPE != ‘RETRO’;

DELETE FROM OFFER F
USING PRODUCT PR
WHERE F.TYPE = PR.TYPE
AND PR.CLASS = 'REPLACED’;

3.3 INSERT Command

Syntax of Command

The INSERT command adds rows to an external-schema table.

3-16

1A LWL SRR VY MY I e | - M S ‘n Ca «, 7
."i_t,.‘.n |!t|‘.<l.| N Ll \.’ < { " 8 [' l-- - ” "'(\". 1‘ LD " l. . y .r AR 8 l.lol‘o

of W T
s

PRM620141200
1 November 1985

The INSERT command has the following syntax:

g iNSERT INTO table-name (column-spec ...)
/ \
“ VALUES | FROM { FILE 'file-name’) B
< { FILE ':variable-name’ } o
| { STRUCTURE :variable-name } |
| value ... |
\ /
where:

file-name and variable-name are defined in the host
program,

table-name and column-name are defined for the relational
view,

table-label is a one- or two-character name,

value is: a scalar variable | a quoted variable | a number
in the host program

column-spec is: { column-name }
{ table-name.column-name }
{ table-label.column-name }

Comments
(a) Locking

An INSERT command issued inside a transaction usually
places an EXCLUSIVE lock automatically (omn rows or on tables,
depending on the particular internal-schema database managers)
until a COMMIT command is encountered. An INRSERT command
outside of a transaction is usually committed immediately and no

. lock is used.

(b) Specified Columns

The columns of the table are specified in the column-list.
Values are supplied either from an external file, in which case
many rows may be created, or from a source-list or data
structure, in which case one row is created for each set of
values. The values are related to columns in the column-list by
their respective orders of appearance. The columns in the
column-list need not be specified in the same order as the

3-17

TG R O A R R N L T A A AT AT TR T TRt

PRM620141200
1 November 1985

columns in the external-schema table were initially described to
the systenm. !

(c) File Input

If the values to be inserted are taken from a file, then
multiple records can be inserted. The specification of file
input causes an implicit loop to be generated that repeatedly
executes the INSERT command until the file is empty. The file
is read as string input. Each rovw is a record; the end of the
rows is marked by the end-of-file. There are no delimiters
between fields. It is assumed that the record format matches
the format of the column list. The file-name is a logical
file-name which should be related to a physical file through the
system’'s job control language. The input file must be defined
in the application program (by COBOL SELECT and FD statements).

(d) Structure Input

The format of a data structure must match the format of the
column list. It is assumed that the data type of structure
fields exactly match that of the corresponding table columns in
the external-schema format. Only one row can be inserted by
this method without explicitly placing the NDML command within a
program loop.

(e) Value and Variable Input

A source list enclosed in parentheses can contain values
and/or program variables for input. Multiple source-lists can
be specified to cause an implicit loop to be generated that
executes the INSERT command once for each source list. The data
types of values explicitly given must agree with the data type
of target columns. 1In this release, values cannot be calculated
by an arithmetic expression within the INSERT statement.

(f) Mapping Restrictions

The external-schema table (the table the user views) must
map to one complete conceptual-schema entity class. This means
that a request to INSERT a row in a table in the user’'s view can
be rejected by the system. Thus, it may be necessary to
determine the conceptual-schema structure and mapping to
external views to formulate a correct INSERT command to
explicitly insert all the columns of a row in the conceptual
schema. In general, an effort should be made on the part of the
CDM designers and administrator to make this mapping as simple

PRM620141200
1 November 1985

as possible while still supporting the variety of external views
needed by users.

g The entity class (conceptual schema) may map to just part

0 (or all) of one or more internal-schema (actual databases)

" record types. If just part of a record type is mapped to, that

N part not inserted is filled will null-values. Moreover, if a

‘ record type in the internal database maps to two conceptual-

' schema entity classes, inserting in one conceptual entity,
followed by the other, will result in two partial record

. instances in the internal database, rather than one complete

g instance; the Precompiler does not view this result as incorrect

', and will not issue a rejection or warning.

(g) 1Integrity Constraints

0 A request to insert a conceptual-schema entity that is

¢ dependent in a relation class but for which no independent

i entity exists will be rejected at runtime. A dependent entity
“ cannot exist without its associated independent entities, one
B for each relation class in which it is dependent.

. A request to insert a conceptual-schema entity with key

P value equal to that of an entity already in the database will be
X rejected at runtime. Key values must be unique.
4

(h) Null Values

The specification of internal-schema null-values is DBMS

: dependent. When the DBMS does not support nulls (as in the case
X of TOTAL), all hyphens will be used in alphanumeric fields,

. negative zero will be used in signed numeric fields, and zero

' will be used in unsigned numeric fields.

N (i) Examples:

. INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES FROM DEPT-FILE;

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES (12 'ENGR' ’‘Bl’ ‘SMALL');

- -, -, -
P X]

INSERT INTO DEPT
(DNO DNAME DLOC DSIZE)
VALUES (12 'ENGR’' 'Bl’' ’'SMALL’)

- .-
o, B

3-19

Vo

-

)

.

[N b, Y » i 1d y = ~ My M : A0 » O W, S S ~ o “ " W
"'.'v"'\c‘u' t."- KRXRANR A -“.‘-‘ W, "‘1‘ LOOOUN A I Wi WAL ¥ L i D i OO .“ lq‘g.l.n o- -v."olo SN, MY W

0 N LN,

RN I Y R T T WU Y Do O T

PRM620141200
1 November 1985

(40 ‘CUST’ ‘'F4’ ’'SMALL’)
(36 'SW’' 'G2' 'LARGE’);
INSERT INTO DEPT
(DNO DRAME DLOC DSIZE) .
VALUES (:DEPT-NUM :DEPT-NAME °'Bl’' :DEPT-SIZE);
INSERT INTO DEPT
(DRO DNAME DLOC DSIZE)
VALUES FROM STRUCTURE :DEPT-REC:;
where DEPT-REC has the structure:

01 DEPT-REC.

03 DEPT-NUM PIC 99.
03 DEPT-NAME PIC X(4).
03 DEPT-LOC PIC XX.
03 DEPT-SIZE PIC X(5).

3.4 MODIFY Command

Syntax of Command

The MODIFY command changes values in an external-schema
table. The MODIFY command has the following syntax:

MODIFY table-name [table-label]
[USING table-name [table-labell, ...]
SET column-spec = value
WHERE { ALL } :
{ predicate-spec [AND predicate-spec ...])

where:
table-label is a one- or two-character name,

table-name and column-name are defined for the relational
view,

value is: a scalar variable | a quoted variable | a number
in the host program

column-spec is: { column-name

}
{ table-name.column-name }
{ table-label.column-nanme)}

B O A R o O A N S o A N A e e S e A G G o L0 P a0, T AR YW,

L

3 N
A

PRM620141200
1 November 1985

/ / \ \

predicate-spec is: | column-spec | = | value |
| 1 = |

| < > > 1
< | = | >

| |

| |

| \ / [

| column-spec { = } column-spec |

! 1=} !

\ /

The columns to be changed and the values to be entered must

be explicitly specified in the SET clause; values cannot be read
from a structure or file.

Comments
(a) Integrity Constraints and Mapping Restrictions

Three specific integrity constraints are enforced by the
system. First, the MODIFY command cannot be used to change the
values of a column that corresponds to the key class of an
entity class in the conceptual schema. Thus, some requests that
have an apparently correct syntax might be rejected. To modify
a key class, it is necessary to first DELETE and then INSERT the
entity. Second, referential integrity is enforced. 1If a
foreign key class is to be modified, there must exist a parent
for the new key. Third, it is not permissible to change just
part of a foreign key class; the entire foreign key must be
changed .

Some columns cannot be modified alone because the column in
the conceptual schema maps to non-normalized database structures
in the internal-schema databases. In particular, a
conceptual-schema column that maps to a data field in a
repeating group in the internal database will not have a unique
value for each row. The Precompiler should recognize this
problem and reject the NDML request. The user can determine
these restrictions before precompilation only by examining
conceptual-internal schema mapping relationships.

(b) Locking

A MODIFY command within a transaction usually places an
EXCLUSIVE lock automatically (on rows or on tables accessed,

3-21

A ;. w, T ' AY v BT ATy T, g M W, Oy Oy Wy 8 W, "
CRANROAS A DARSOANON A0 SOGOEON VL G M R T A Ry T, % 5, T TH B Y LY NN L o = a0

PRM620141200
1 November 1985

depending on the particular internal-schema database managers)
until a COMMIT command is encountered. A MODIFY command issued
outside of a transaction usually commits the result immediately.
The specific lock used is determined by the particular
internal-schema database manager.

(c) USING Clause

The USING clause specifies tables that are accessed by the
WHERE clause to qualify the request. These tables need not
necessarily include the one that is being modified. To be
meaningful, tables indicated in the USING clause must be related
to the table on which the MODIFY command acts by a
Join-predicate.

(d) SET Clause

The SET clause specifies the new values that are to be
given to values in designated columns. The new value can be
contained in a program variable or be given explicitly. In this
release, new values cannot be calculated by arithmetic
expressions in the MODIFY command, nor can they be contained in
a structure or file.

(e) WHERE Clause

The WHERE clause is mandatory. The WHERE clause is used to
specify which rows qualify to be changed. 1If all the rows of a
table are to be modified, then the WHERE ALL clause should be
used. For selective qualification of rows, the WHERE clause has
the same powver of expression as it does in a SELECT statement.
Note that this release of the system supports only the AND
connector between phrases of a predicate. 1If the WHERE clause
is not included in a MODIFY statement, the Precompiler will
reject the statement and issue an error code.

Some columns cannot be specified in a WHERE clause because
the column in the conceptual schema maps to non-normalized
database structures in the internal-schema databases. In
particular, a conceptual-schema column that maps to a data field
in a repeating group in the internal database will not have a
unique value for each row. The Precompiler should recognize
this problem and reject the NDML request. The user can
determine these restrictions before precompilation only by
examining conceptual-internal schema mapping relationships.

) i A\ O et TR ol . AL . W A T Y
‘.'J.!?‘.l:'.l,'l AN, ‘O. 0. AN ‘l. A AN ..l. " % '. (. MR (p 0" ('Y 'f. N

Y
$s a8 N ble 0V,

PRM620141200
1 November 1985

(f) Examples:

MODIFY OFFER F
SET F.STATUS = 'EXPIRED’
WHERE F.DATE < :CUTDATE;

MODIFY OFFER F
SET F.RESPONSIBLE-DEPT = 'BENEFITS’
WHERE ALL;
MODIFY DEPT D
USING EMPLOYEE EMP
SET D.STATUS = 'INACTIVE’
WHERE D.DNO != EMP.DNO;

MODIFY DEPT D
SET D.STATUS = 'INACTIVE'
D.LOC = ‘INACTIVE’
D.RESPONSIBLE-MNGR = :MNGR-INPUT
WHERE D.DNO = :DEPT-NO-INPUT;

3.5 Transaction Commands

3.5.1 BEGIN TRANSACTION Command

The BEGIN TRANSACTION command indicates the start of one or
a group of NDML commands that must be completed successfully as
a unit in order to maintain the integrity of the database
system. All automatic locks issued (for SELECT, INSERT, DELETE
and MODIFY commands) and an explicit EXCLUSIVE lock placed by a
SELECT command refer to this transaction. If locks exist from
prior commands for an open transaction that have not been
removed by a preceding commit-command or rollback-command, the
BEGIN TRANSACTION command will issue a rollback-command to undo
any uncommitted previous commands.

A transaction ends at the next UNDO, ROLLBACK or COMMIT
statement. Transactions cannot be nested.

3.5.2 UNDO and ROLLBACK Commands

These NDML commands cause the system to undo any actions
accomplished since the last BEGIN TRANSACTION command. The
databases will be returned to their previous states.

3.5.3 COMMIT Command

The COMMIT command causes all actions accomplished since

3-23

hy - Ty ¥ T T T aal Yy L8 o L
N NGO Ryl o X A Iy p 2 ok,)‘h . c.,-.

Dl B0 MR L M X e 3% . 0

PRM620141200
1 November 1985

the last BEGIN TRANSACTION command to become permanent and all
existing locks on records for this transaction to be removed.
The following is an example use of the COMMIT command:

s BEGIN TRANSACTION;
e MODIFY OFFER F

% SET F.RESPONSIBLE-DEPT = 'BENEFITS’
4 WHERE ALL;
IF NDML-STATUS = ‘ERROR’
Ak ROLLBACK;
ELSE
4 COMMIT;

3.6 Embedding NDML in COBOL

COBOL compilers do not know the meaning of the NDML
commands. Therefore, a COBOL application program that contains
NDML statements must be precompiled by the IISS Precompiler. The
Precompiler substitutes in-line COBOL code into the application
program in place of the NDML statements. The substituted code
provides the mechanisms necessary to send messages to the
Distributed Request Supervisor, make the contents of progran
variables available to the system, open and read returned files,
etc.

In order to allow the Precompiler to distinguish the NDML
statements from COBOL statements, each line of NDML code must
contain a "*#" in columns 7 and 8; the rest of the NDML
statement must begin in column 12 or greater. All NDML lines
will look like comment lines to the COBOL compiler and the COBOL
compiler can be used to test COBOL code before precompilation,
with two exceptions, without removing the NDML statements. One
exception is that a "." may be needed within a loop construct
after a BREAK, EXIT, NEXT or CONTINUE statement that may not
make sense to the COBOL compiler before the program has been
precompiled; this results in a simple error message that can be
ignored. The second exception is that any references to the
variables NDML-COUNT or NDML-STATUS will result in a compile
error because these variables are generated into the program by .
the Precompiler. Examples are foand in the Appendix.

The following procedure is recommended for programming an
application program containing embedded NDML.

1. Compile the program with the COBOL or FORTRAN compiler
using explicit test values for program variables that
will be retrieved by NDML commands. Locate and fix all

......
. -

A

-

-

PRM620141200
1 November 1985

COBOL syntax and processing errors.

2. Precompile the program to identify all syntax errors in
the NDML; fix all errors.

3. Compile the output of the Precompiler with the COBOL
compiler and perform a number of link and install steps
as described in PART II of this manual. Be sure to
test the resulting program before routine use.

3.7 Embedding NDML in FORTRAN

FORTRAN compilers do not know the meaning of the NDML
commands. Therefore, a FORTRAN application program that
contains NDML statements must be precompiled by the 1ISS
Precompiler. The Precompiler substitutes in-line code FORTRAN
into the application program in place of the NDML statements.
The subroutines provide the mechanisms necessary to send
messages to the Distributed Request Supervisor, make the
contents of program variables available to the system, open and
read returned files, etc.

In order to allow the Precompiler to distinguish the NDML
statements from FORTRAN statements, each line of NDML code must
contain a "C#" in the first two columns; the rest of the NDML
statement must begin in column 7 or greater. All NDML lines
will look like comment lines to the FORTRAN compiler and the
FORTRAN compiler can be used to test FORTRAN code, with one
exception, without removing the NDML statements. The exception
is that any references to NCOUNT or NSTATS (the equivalent of
NDML~-COUNT AND NDML-STATUS in COBOL) variables in the FORTRAN
program will result in an error because these variables are
generated into the program by the Precompiler.

The following procedure is recommended for programming an
application program containing embedded NDML.

1. Compile the program with the FORTRAN compiler using
explicit test values for program variables that will be
retrieved by NDML commands. Locate and fix all FORTRAN
syntax and processing errors.

2. Precompile the program to identify all syntax errors in
the NDML; fix all errors.

3. Compile the output of the Precompiler with the FORTRAN
compiler and perform a number of link and install steps

I}

»a

-
. B
RS AL

vell e e
"«u"-i

¥
ty
)

PRM620141200
1 November 1985

as described in PART II of this manual. Test the
resulting object code.

3.8 Loop Construct

3.8.1 When a Loop Construct Is Needed

The host language compiler expects that all input and
output in an application program be done a record at a time. In
contrast, a single NDML SELECT command can return many records.
The loop comstruct is provided to allow NDML to interact with
the application program one record at a time.

A loop construct is necessary for assignment of multiple
returned values to program variables or to a structure, even if
the variables or structure fields are vectors. The major reason
that implicit looping is not generated is that there is no way
to determine the number of records to be returned during the
precompile step; therefore, the programmer should test the
number of records returned within an NDML loop comnstruct to
ensure that storage dimensions of the variables are not exceeded
during execution.

It is not necessary to use a loop construct if only the
first record returned is to be used. For example, a loop
construct will never be necessary when functions are specified
in a SELECT because only one row is returned. Specification is
used because looping is implicit (the file is assumed to be
capable of growing to hold all output).

Note that the loop executes after the SELECT retrieval is
complete. Therefore, changing values in the WHERE or ORDER BY
clauses within the loop will have no affect on the result.

3.8.2 Number and Type of Data Fields

The programmer must take care to specify the progranm
variables or file names that are to receive the values returned
by the SELECT statement. Note that the command

SELECT ALL

is especially risky because the number of the retrieved columns
is not explicit and their assignment to data fields in a
structure or to a file is susceptible to error (i.e., assignment
to individual program variables is syntactically not possible).

3-26

W

[T by - W S ALK £y 0 , . ' LSRR L. 8. P o & TN o K W Yy ¥,
i “'"‘.H"‘h‘ L, ,lzt. l.!'.a.'u.’«..l .‘Q&‘ Pl H' - » _‘r - ’ ‘- --0"" n-ln o ..I.-"‘ . 809 ¥o¥ Ta 'Q.

C{1a\0 ¥ Vol

il B

PRM620141200
1 November 1985

3.8.3 Syntax

A loop must immediately follow a SELECT command. If a loop
construct follows, do not end the SELECT command with a ";"; the
‘ end of the NDML procedure is indicated by the closing bracket.
The start of the loop is indicated by "{" and the end by "“}",
both of which are embedded NDML statements and must be preceded
on the line in the application program by appropriate NDML
designation characters. The body of the loop can contain both
host-language statements and embedded NDML commands.

It is permissible to include NDML statements within loop
constructs for a SELECT statement. A transaction defined by a
BEGIN TRANSACTION statement must either enclose the entire
SELECT statement and associated loop construct or must be
contained within the loop construct. An example of the latter
is given below.

Two important restrictions on the use of loop comstructs
are the following. Programmers should not attempt to exit a
loop by using a host language GOTO or equivalent statement. The
result of such a jump is undefined. Secondly, the NDML commands
SELECT, INSERT, DELETE and MODIFY should not appear within a
host-language "IF" statement because the Precompiler will not be
able to guarantee the integrity of the logic path. The NDML
statements listed below are provided to control the processing
of loops. (The NDML commands COMMIT, UNDO and ROLLBACK can also
be placed within a host-language IF statement).

3.8.4 NDML Loop Control Statements

(a) CONTINUE or NEXT

This statement causes the current iteration of the loop to
terminate and the next iteration to be generated. The NDML
statement CONTINUE should not be confused with the FORTRAN
statement.

(b) BREAK or EXIT

. This statement causes the loop to be terminated and control
to be passed to the program statement following the end of the
loop.

3.8.5 Evaluation

The following actions are taken by the system to evaluate
an embedded NDML SELECT statement:

'N"f::“ -‘,'n-cl

PRM620141200
1 November 1985

. The system evaluates the query and stores the resulting

rows in a result file. If a file name has been
specified by the programmer in an INTO phrase to
receive the results, the result file is given the
specified name and the command is finished. Otherwvise,
proceed.

The code within the loop specified in the SELECT
command is executed, once for each row generated by the
query. Values are moved to the program variables or
structure fields specified to receive them. It is
necessary that the host language code either move those
values to safe storage or specify new variables (for
example, new indices of array variables) for each
execution of the loop if more than one row is returned.
The host language code should also test the number of
loops to ensure that the allocated storage for returned
information is not exceeded.

The following example illustrates how program variables
that receive information from a SELECT statement can be
manipulated in a loop construct (this and the following examples
are COBOL). Note that the braces should be on a separate line
without following code.

**
#*
*#
i

The

SELECT :PART-NUMBER = P.PARTNO,
:PART-NAME = P.NAME
FROM PARTS P

DISPLAY PART-NUMBER, PART-NAME
COMPUTE NUMBER-OF~PARTS =
NUMBER-OF-PARTS + 1.

)

following example shows how a COBOL variable can be

used in the WHERE clause and how the CONTINUE statement can be
used. Parts with a null part name are skipped. Otherwise,

counters
number .

s
b
b

s
*»

Ty - [P , T , ’ - " . , . E
AL X e.-".lA . I'u’l'\, ¥ 2" 0'; A\ "1 "Q (AL AL P Ay Y LARA Yy (X4 T b, .qﬁu.l’l !l’v 8,50, -' SR AN AN NN Ty g

are incremented depending on the value of the work

SELECT :PART-NAME = P.NAME, :WORK-NO = P.WORKNO
FROM PARTS P
WHERE P.SIZE = ’'SMALL’

AND P_.PARTTYPE = :PART-TYPE

3-28

. -
AN A W)

e

%

The
within a

#
e
*#
bt
*#
%

b
**

%

PRM620141200
1 November 1985

IF PART-NAME = SPACES
CONTINUE

IF WORK-NO <« BREAK-POINT

ADD 1 TO ODD-LOT-COUNT
ELSE

ADD 1 TO REGULAR-LOT COUNT.

following exahple shows the inclusion of a transaction
loop construct.

SELECT :PART-NAME = P.NAME, :PART-COLOR = P.COLOR
FROM PARTS P
{

BEGIN TRANSACTION;
INSERT INTO COLORTABLE (CNAME CCOLOR)
VALUES (:PART-NAME :PART-COLOR);

IF NDML-STATUS = 'ERROR’
ROLLBACK ;

ELSE
COMMIT;

}

Other examples are shown in the Appendices A and B.

hry i 2 . g L W A gt P ~ ~
O R OO U AN K R ICNIC L AN K I W MR AN R Mt A N o e e MU Tl A N,

—— e .

[R

PRM620141200
1 November 1985

SECTION 4
NDML PROCESSING

4.1 1IISS Precompiler Overview

The IISS Precompiler will precompile a user’'s application
process containing embedded NDML commands. The Precompiler
parses the application program source code and identifies the
NDML commands. It will modify the original application process
to include numerous variables and subroutine calls necessary to
implement the NDML commands in the host language. The
Precompiler will generate code (generated query processes) that
will be activated at run time to access the identified
internal -schema databases and to perform the required
internal-schema to conceptual-schema transforms. It will also
generate code (generated conceptual/external transformer) that
will be activated at run time to perform the required conceptual
to external transforms, statistics functions, ordering of
results, and other processes necessary to present the requested
results to the application process.

In order to execute the IISS Test Bed Precompiler, the user
must enter the IISS Test Bed System. After entering his
username, password and role he will then be shown the CHOOSE
FUNCTION form. The function name CDCDPREZZZ should be entered
to start the Precompiler. The next form shown will be the
PRECOMPILER INPUT form. The user should enter the application
process name, the target host of the application process, the
source file name and the source listing file. The Precompiler
will execute and the user will be returned to the CHOOSE
FUNCTION form. Following is an example of the forms and the
required responses to execute the IISS Test Bed Precompiler. At
end of precompilation, an error count message will appear at the
bottom of the function screen.

After precompilation is complete, leave UIMS and return to
VAX/VMS. Review the source listing file using $EDT, STYPE or
$PRINT to check for errors and instructions concerning generated
code which must be compiled, linked, tested, and added to the
NTM tables and possibly transferred to a different host. Note
that the NTM requires that all file names be 8 characters;
consequently, names in the generated code will be padded with
the character Z to achieve the required length. At this
writing, a complete list of Precompiler-generated error
messages is not available.

et b Gk Lh Lk % a'4 atf ab 110a0a at ata atat ot 2 alat s 02"

PRM620141200
1 Rovember 1985

Changes can be made to the original source code with an
editor if need be and the program precompiled again. The
Precompiler will automatically delete generated Application
Process name references from the data base, but will not delete

out of date versions of source code, objects and executable
images.

4.2 Example of Precompiling and Executing Application Process '

Following is an example of precompiling and executing an
Application Process. The example will be using Application
Process CDTS1. This is a COBOL Application Process; however,
the steps detailed belov are the same whether the users
application is a COBOL or FORTRAN program. '

Step 1 - Execute the IISS Precompiler

Enter the 1ISS Test Bed System. After entering username,
password and role, the CHOOSE FUNCTION form will be displayed.
At this time CDCDPREZZZ is entered as the function to start the
Precompiler (see Figure 4-1). Figure 4-2 shows the responses .
required to precompile Application Process CDTS1. The TARGET }
HOST is the name of any valid host within the IISS system. The)
SOURCE FILE is the file name for the source code before '
precompilation and SOURCE LISTING FILE is the file name to
contain the source code after precompilation (these two file
names must be different). Figure 4-3 shows the corresponding
responses if CDTS1 were a FORTRAN Application Process. At the

[
completion of precompilation the CHOOSE FUNCTION form will be Ly
displayed and at this time EXIT should be entered. $

']
‘l
3
!
0
:
2
:
\
(]
4-2 .

Wy (. Cx " o W, 'y " o i) W M - ot Al - ey T
e A A e e e S A S G L RN AN ' WS A N RS . AR

-y o s .

PRM620141200
1 November 1985

IISS TEST BED VERSION 1.0

- — Y T . —— —— —— —— T —— T - —— — T T ——————— - T —— - - —————— - —

DATE: /7 TIME: : : USER 1D: ROLE:

. FUNCTION :CDCDPREZZZ

——— ——— g =~ -

Figure 4-1. Execute Precompiler

4-3

h R A AP g L x ' T T x> v ‘
O O O oy o o A O L D e e O S D Y e S o R e AN W0, N

I A%y [Ly at 3 Tg 4 f gt @ gL o7

PRM620141200
1 November 1985
IISS TESTBED PRECOMPILER

PLEASE ENTER THE FOLLOWING INFORMATION ABOUT THE APPLICATION
PROCESS TO BE PRECOMPILED:

APPLICATION PROCESS NAME - CDTS1
TARGET HOST OF APPLICATION PROCESS - VAX

SOURCE FILE NAME - SNGTEST.PRC
SOURCE LISTING FILE - CDTS1.COB

Figure 4-2. Precompiler Application Process Responses
(COBOL)

4-49

- \ -y r g L% ! N . .
1) ‘.‘." ..“ ‘0‘.‘!‘.“‘."‘-‘!‘4!.‘0‘ .‘l .A.‘Q n‘l.A o“; o8 2 \ " ‘t‘q e ML 0% S 0N IS J‘C.l [}

WV e

Skl

SENT MY

v
) ~‘.‘|‘.!I..’m:“,‘u!'

PRM620141200
1 November 1985
IISS TESTBED PRECOMPILER

PLEASE ENTER THE FOLLOWING INFORMATION ABOUT THE APPLICATION
PROCESS TO BE PRECOMPILED:

APPLICATION PROCESS NAME - CDTS1
TARGET HOST OF APPLICATION PROCESS - VAX

SOURCE FILE NAME - SNGTEST.PRC
SOURCE LISTING FILE - CDTS1.FOR

Figure 4-3. Precompiler Application Process Responses
(FORTRAN)

4-5

J B,)) 255 . Ve S AW W T PR YL R Y ~ LT T T
IR A R N NN TN S DRV o T P30 X M o WY T M W o W Y W

.....

e

N

B

PRM620141200
1 November 1985

Step 2 - Review the Precompiled Application Process Source
Listing File

Edit the source listing file, for this example CDTS1.COB,
and locate the text string “"ERROR LISTING". Print the text
starting at this line until the end of the file. Figure 4-4
shows an example of the output for the CDTS1 Application
Process.

File BOOO8.TMP is the error listing file generated during
the precompilation of the Application Process. FILE
AOOOS52ZZ2.COB is the generated Conceptual/External Transform
Program. File AOOO6Z2Z.COB is the generated Request Processor.
There will always be one error file but could be many C/E
Transform Programs and Request Processors depending on the
number and complexity of the NDML queries in the Application
Process. The HOST column indicates the computer host where the
code must be transferred if different from the VAX. The TYPE
column indicates the type of generated application process,
either a conceptual/external transformer or a query processor.
The A*.COB and B*.TMP will be different for each run of the
Precompiler.

Step 3 - Review the Error Listing File

Review the error listing file using SEDT, STYPE or S$SPRINT
to check for errors that might have occurred during the
precompilation of the Application Process. If errors have been
detected, change the original source code (SNGTEST.PRC) and
precompile the Application Process again starting at STEP 1,
otherwvise continue with Step 4.

Step 4 - Compile the Precompiled Application Process and the
Generated Application Processes.

The precompiled Application Process and the NDML programs
generated during the precompilation phase must be compiled in
order to create object files for each program. The programs
generated during the precompilation phase to implement NDML
commands will be Conceptual/External Transformers and Request
Processors. The number of these NDMP programs will depend on
the complexity of the NDML query in the original users

 QOUOLO o P o DO e € f A AT o,

R)
AL AR N N i)

=

PRM620141200
1 November 1985

*ERROR LISTING IS BOOO8.TMP

*

*THE GENERATED APPLICATION PROCESSES FOR THIS PROGRAM ARE:
*

* FILE NAME HOST TYPE

* AOO052ZZ.COB VAX CONCEPTUAL/EXTERNAL TRANSFORMER
* A0006ZZZ.COB VAX ORACLE QUERY PROCESSOR

. en o
KR

2w .-

2 Figure 4-4. Example Output

N 4-7

LIS TV Y R [T Y] » N . : . -
‘ y " aTaR Y T A T T
L BT W% S 8% A% 1% Lk ') (]

R O 0 . }
W, L“I.L"u.\"Jb“‘ AOSOASAL LAY AV A%, Y8,

YT I R T O O O O O MO O o o o

PRM620141200
1 November 1985

application process. The following procedure files have been
provided to compile any program:

COMPANS - compile a COBOL program/subprogram
FORANS - compile a FORTRAN program/subprogram .

The parameters for the compile procedure are as follows:

COMPANS P1
FORANS Pl

wvhere Pl = file name of the program

For this example three programs must be compiled as shown below:

$@COMPANS CDTS1
$@COMPANS A0005ZZZ
$@COMPANS A0006Z22

Step 5 - Link the Precompiled Application Process and the
Generated NDML processes

The programs that were compiled in Step 4 must now be
linked in order to create an executable file for each program.
The link procedure file for the query processors will vary
depending on the data base manager that must be accessed in
order to satisfy the NDML query. The following procedure files
have been provided to link any programs/subprograms.

LNKAP - link a precompiled Application Process

LNKCE - link the Conceptual/External Transformer

LNKQERY - link an ORACLE Request Processor

LNKSUB - link a precompiled Application Process and) i

associated subprograms
The parameters for the link procedures are as follows:
LNKAP Pl P2]

LNKCE Pl P2
LNKQERY Pl P2

where

Y o Yo YU
'.‘\'.‘l‘. AR R '. "

-

f‘ i'{--. . n -J..".'_..“_- .-f'f.-'r""."-'f ~p -

~ iy V3! Ay I
.,0'"u""l“.l‘.‘:\".l"a!‘u"d"l DU WL I S i 1 MO

P Y S P S WU S L0 D0 D L LN S O LY (T | T S T LD R L O T N I T P R T TP O W L P T O L U TP LW TP e LW e e

PRM620141200
1 November 1985

Pl = name of the program
P2 = link parameter (i.e. DEBUG, NODEBUG, NOMAP)

LNKSUB Pl P2 P3

where
Pl = name of the main program
P2 = name of the subprogram

P3 = link parameter (i.e. DEBUG, NODEBUG, NOMAP)

For this example, three programs must be linked as shown below:

S@LNKAP CDTS1 NODEBUG
$@LNKQERY A0006 NODEBUG
$@LNKCE AQ0O0OS5 NODEBUG

NOTE: 1If the generated code must be transferred to another
host, one must first transfer the code and then perform Steps 4
and 5 on that host, using procedures to be determined. Other
link processors will be required for other dbms-host
combinations.

Step 6 - Add the Application Process to the NTM Tables

If this is the first time the Application Process has been
precompiled some NTM tables must be changed in order to reflect
the new Application Process and its generated NDML Processes.
The modification of these tables involves editing a table
initialization file to make the necessary changes. The
structure of the tables and an example of an initialization data
record is included in the IISS Test Bed Network Transaction
Manager Operator’'s Manual. The following NTM tables must be
modified when adding a new Application Process:

‘ ACTTBL = Authority Check Table
APITBL = Application Process Information Table
APTTBL = Application Process Characteristics Table
Step 7 - Add the AP/ROLE Relation to the UI Data Base
If this is the first time the Application Process has been
precompiled, a row must be added to the AP/ROLE relation found

in the UI data base. This consists of executing ORACLE and
using the ORACLE UFI language to add the new AP/ROLE data.

4-9

.....

PRMG620141200
1 November 1985

Step 8 - Define the Application Process to the UIMS

If this is the first time the Application Process has been
precompiled, the Application Process must be defined to the
UIMS. Procedures to define the Application Process can be found
in the IISS User Interface Management System Services User
Manual.

Step 9 - Execute the Precompiled Application Process

Application Process, one must enter the 1ISS Test Bed
System as described in Step 1. At the CHOOSE FUNCTION form,
enter the name of the Application Process, in this case
CDCDTS1Z2Z (see Figure 4-5). The Application Process will now
be executed. Application Process CDTS1 does not use the forms
interface for accepting inputs or displaying results; therefore,
wvhen executing CDTS1, all prompts and results will be displayed
on the operators console. In order to receive these prompts and
results one must use the following VAX/VMS ASSIGN statement for
the operators console:

$ ASSIGN/GROUP _TTnn: SYS$SCOMMAND

wvhere nn is the process number for the current terminal
determined by issuing the VAX/VMS SHOW PROCESS command.

NOTE: Steps 6-9 are used only for the precompiled Application
Process.

PRM620141200
1 November 1985

IISS TEST BED VERSION 1.0

——— —— — . - —— ——— — — - ——— —— —— A . ——— W ——— Y — - ———" - —t————_— — " t—— - ———— 2

DATE: / / TIME: : : USER ID: ROLE:

-— —— - - -—— - —— g — - — - ——

FUNCTION: CDCDTS122Z

%

Figure 4-5. Execute Precompiled Application

T O R R R R KA R AN A T ADE U A N W OO EXNOCOUOU D]

PRM620141200
1 November 1985

4.3 COBOL Reserved Names and Labels

During the precompilation phase of IISS, code is generated
into the generated application process source code. For a COBOL
application process, code is generated in the File Control
Section, File Section, Working-Storage Section and Procedure
Division. Following is a list of reserved file names, variable
names and label statements for any COBOL application process
used in the IISS environment. These are legal COBOL variables
and statements but must not appear in the original application

process as user defined variables or labels.
(a) File Names

RESULT - nn

where nn depends on the nesting structure of the embedded
NDML query statements

(b) Variable Names

CDM-**
RES-**
SS-*»
NDML-STATUS
NDML-COUNT

where ** suffix added depending on the embedded NDML
query statements

(c) Label Statements
CDM-LOOP-nn

CDM-EXIT-nn
CDM-ESCAPE-nn

wvhere nn depende on the nesting structure of the embedded
NDML query statements

4.4 FORTRAN Reserved Names and Labels

During the precompilation phase of IISS, code is generated
into the original users application process source code. This
generated code consists of variable definition statements and
formatted input/output statements. Following is a list of
reserved variable names, CONTINUE statements, FORMAT statements
and logical unit numbers for any FORTRAN application process

4-12

- ——————

PRM620141200
1 November 1985

used in the 1ISS environment. These are legal FORTRAN variables
and statements but must not appear in the original application
process as user defined variables or labels.

(a) Variable Names

APHOST
CDCHAN
CDCSRT
CDDLEN
CDDTYP
CDMSNV
CDMSRC
CDMTYP
CDPTR

CDTVAL
CDVWFLG
DECMAL
NTMSTA
NSTATS
NCOUNT

ACnnnn
CHnnnn
DInnnn
Fnnnnnn
MSGInn
MSGOnn
RSnnnn

where nn... depends on the nesting structure of
the embedded NDML query statements

(b) CONTINUE Statements
997nn - 999nn CONTINUE

where nn depends on the nesting structure of the embedded
NDML query statements

(c) FORMAT Label

996nn FORMAT

where nn depends on the nesting structure of the embedded
NDML query statements

. N LT
RO TR, PO e R |

b ens el et 1 st o ateiin 4 @a bty M adte e 1t o 00t b Bt g 8 18 00 gl ST ONON 0

PRM620141200
1 November 1985

(d) Logical Unit Numbers

The logical unit numbers for the result files will
be numbered starting at 99 and decremented by one for each
NDML query statement.

| o

¥ >

IO X X N T T e O O R O G A e s

PRM620141200
1 November 1985

APPENDIX A
BNF OF THE NDML

* A.1 Conventions

Certain conventions are used to describe the form of
commands :

UPPER CASE WORDS denote keywords in the command
LOWER CASE WORDS denote user-defined words

{ } denotes that exactly one of the options within the
braces must be selected by the user

“{" or "} denotes a literal brace character without
special meaning

-

[] denotes that the entry within the brackets is optional
¢ I denotes an "or" relationship among the entries
' _ denotes default option
The only punctuation allowed is:
) (1) a "." to separate the table-label (.e., table alias)
K from the column-name. The table-label is used to match a
! column to a specific table in the list of tables
K referenced in the FROM clause,
. (2) a ":" before the name of a host-language program
' variable, structure or file name that will receive
returned values,

! (3) a "," between entries in the list of tables in a FROM
; clause,

-

(4) a "," between subscripts to an array variable,

g

(5) a set of parentheses to enclose the column-list in an
INSERT statement,

X
1

.
.

I
Rl

(6) a set of parentheses to enclose the object column of a
function,

RN Y S - AL LI
[[T AL S w -,,Y AR R R RS
3 & " 3 ¢l ! 4 B - 98

Annn g : A TR AT AT R
RO IAC s U dlede VoV g,y -.l' OO IO IO O S P SO o)

«

LIS
S TR A "5y
R [oa F o Con AN

., ", =
AN . -
0

(N

PRM620141200
1 November 1985

(7) a set of parentheses to enclose the values to be :
inserted in an INSERT statement,

o (8) a set of parentheses to enclose a program variable
o subscript list,

(9) a mandatory ":" or loop-construct at the end of the
command .

o Only upper-case letters are recognized by the NDML
' Precompiler.

Y A.2 NDML Backus-Normal Form (BNF)

e ndml -~command ::= select-command | insert-command |

RS delete-command | modify-command |

o begin-recoverable-unit-command |

}@ commit-command | rollback-command

_ select-command ::= SELECT [lock-request]

) [INTO external-struct] [DISTINCT]
! {[table-label] ALL | expr-list |
» var-assgnmt-1list)

b FROM table-1ist

* [WHERE predicate-list]
[ORDER BY order-spec-1list]
{; | loop-construct }

R

g

i &

o insert-command ::= INSERT INTO table-name

p (column-list)

e VALUES {FROM external-struct |
A source-list};

*

! delete-command ::= DELETE FROM table-name

B [table-label) ‘
) [USING table-list]
WHERE {ALL | predicate-list};

modify-command ::= MODIFY table-name [table-label]
[USING table-list]
SET column-assgnmt-list
WHERE (ALL | predicate-list};

begin-recoverable
unit-command ::= BEGIN TRANSACTION;

" " . . - e NN AR
“".~-f’\e"*""".ﬂ ‘.ﬁ"-"’." '.\".!“‘ﬂ'*.?’_'.'o"A9.'.\'M'M‘\l‘h‘h".| LT IA RN g MACRICUMR A R XA M o] P RMA NN S u by WYY

comnit-command
rollback-command

bool-op

column-assgnmt-list

column-assgnmt-spec

column-list

column-predicate

column-spec

digit

direction

expr-list

expr-spec

external-struct

function
integer
Join-op
Join-predicate

lock-request

loop-construct

PRM620141200
1 November 1985

column-assgnmt-spec |
column-assgnmt-list
column-assgnmt-spec

column-spec = value

column~-spec | column-list column-spec

column-spec bool-op value | value
bool-op column-spec

column~-name { table-name.column-
name | table-label.column-name

0111213141516171819

ASC | DESC | ASCENDING |
---DESCENDING | UP | DOWN
expr-spec | expr-list expr-spec

column-spec | function([DISTINCT]
column-spec)

FILE ‘file-name’ |
FILE ':variable-name’ |
STRUCTURE :variable-name
AVG | MEAN | MAX | MIN | SUM | COUNT
digit | integer digit
- | Im

column-spec join-op column-spec

WITH (EXCLUSIVE | SHARED | NO] LOCK

"{* statement-list "}"

»

Y

BEBERAGHONEGI

number

order-spec-list

predicate-list

predicate-spec
quoted-variable
scalar-variable
source-list

statement

statement-list

subscript-list
table-list

value

value-list

var-assgnmt-1list

var-assgnat-spec

b IO I LA AL 203 Y

PRMG20141200
1 November 1985

integer [.[integer]]

column-spec [direction] |
order-spec-list column-spec
[direction]

predicate-spec | predicate-list AND
predicate-spec

column-predicate | join-predicate

‘literal-string’

:variable-name [(subscript-list)]

(value-list)

host-language-statement |
ndml-command | BREAK | EXIT |
CONTINUE NEXT

statement |
statement-1ist statement

integer | subscript-list , integer

table-name [table-label)] | table-
l1ist, table-name [table-label]

scalar-variable | quoted-variable |
number

value | value-list value

var-assgnmt-spec |
var-assgnmt-list var-assgnmt-spec

scalar-variable = expr-spec

PRM620141200
1 November 1985

APPENDIX B
¢ COBOL EXAMPLE PROGRAM

IDENTIFICATION DIVISION.
PROGRAM-ID. VOMAPS.

I A AR AR R E R 2 2 2 R E R R R R R R R R R R S R R R R R S X R R R RS R ST EERRRERREEY
x

* PROGRAM NAME VOMAPS
*
3

I E AR R R R R E SRR R R E R R R R E R R R R R R P R R R R R R R R R R S R R R R E PR FT RS
x

* DESCRIPTION : THIS ROUTINE ENFORCES THE FOLLOWING AUC
; TO SET MAPPING RULES:
1. AN AUC ALWAYS MAPS TO THE SAME DATABASE
2. THE AUC VALUE MUST BE UNIQUE.
3. THE SET OWNERS RECORD TYPES MUST BE
BE IDENTICAL.
IF NO RULES ARE BROKEN, THE RETURN CODE
IS 1, OTHERVISE ZERO.

»

LR JEE BEE BN Y IR SR

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

’ SOURCE-COMPUTER. VAX-11.

‘ OBJECT-COMPUTER. VAX-1l1.
x

‘DATA DIVISION.

: DATA ORGANIZATION :

‘WORKING-STORAGE SECTION.
' * INCLUDE FILES

*

COPY SRVRET OF IISSCLIB.

B-1

BRoneEnDe LA ' L LT N R e T R Tt oF SR AT
OO I O O D O D T T I T D AN TG 2 A Ve RN N N A S R TV AN

PRM620141200
1 November 1985

* LOCAL VARIABLES .

 J

01 MODULE-NAME FPIC X(6) VALUE °"VOMAPS".
01 MESG-DESC PIC X(60).

01 RET-STATUS PIC X(S5).

01 DB-NO PIC S9(9) COMP.

Ol SET-NAME PIC X(30).

01 REC-NAME PIC X(30).

01 AUC-VALUE PIC X(30).

*

* INTERFACES :

*

LINKAGE SECTION.
*

&

* INPUT ARGUMENTS

*

01 IN-DB-NO PIC S9(9) COMP.
01 IN-SET-RAME PIC X(30).
01 IN-OWNER-REC-NAME PIC X(30).
01 IN-TAG-NO PIC S9(9) COMP.
01 IN-AUC-VALUE PIC X(30).

* OUTPUT ARGUMENTS
01 OUT-CODE PIC S9(9) COMP.

LIMITATIONS

PROCESS DESCRIPTION :
PERFORM AN NDML SELECT TO OBTAIN INFORMATION ON
PREVIOUS MAPPINGS FROM THE TAG NUMBER. FOR EACH
ROV SELECTED, ENSURE THAT THE ABOVE 4 RULES ARE
ENFORCED. IF NOT, GENERATE AN APPROPRIATE ERROR
MESSAGE AND RETURN WITH OUT-CODE EQUAL ZERO, ‘
OTHERVISE OUT-CODE EQUALS ONE.

LR TR R NN JEE JEE IR JEE N K B

PROCEDURE DIVISION USING IN-DB-NO
IN-SET-NAME,
IN-OWNER-REC~-NAME
IN-TAG-NO
IN-AUC-VALUE
OUT-CODE .

PRM620141200
1 November 1985

START-PROGRAM.
MOVE 1 TO OUT-CODE.
3 SELECT :DB-NO = A.DB 1D,

. g :SET-NAME = A_.SET_ID,
3 :REC-NAME = B.RT_ID OF_OVWNER,
b :AUC-VALUE = A.AUC_VALUE
*$ FROM AUC_ST MAPPING A,
>y RECORD SET B
% WHERE A.TAG NO = :IN-TAG-NO AND
8 A.DB_ID = B.DB_ID AND
o A.SET_ID = B.SET_ID
t 2
4 {

*

* APPLY RULE 1 - THE DATABASE FROM THE SELECT
STATEMENT MUST MATCH THE USER ENTERED DATABASE
*
IF DB-NO NOT = IN-DB-NO
MOVE O TO OUT-CODE
MOVE "AUC MAY NOT BE MAPPED TO DIFFERENT DATABASES"
TO MESG-DESC
CALL "UERROR“ USING MESG-DESC
b EXIT

APPLY RULE 2 - THE AUC VALUE MUST BE UNIQUE

IF AUC-VALUE = IN-AUC-VALUE
MOVE 0 TO OUT-CODE
MOVE "THE FOLLOWING AUC VALUE IS NOT UNIQUE - "
TO MESG-DESC
CALL "UERROR" USING MESG-DESC
MOVE IN-AUC-VALUE TO MESG-DESC
CALL "UERROR" USING MESG-DESC
e EXIT

* APPLY RULE 3 - THE SET OWNERS RECORD TYPES MUST MATCH

LA s

. v, ey T la Ta " Y
RS RV TP MR .n?'i

e

s

B R R R R R A AL R TRV et 2 b 82 il 8

PRM620141200
1 November 1985

IF REC-NAME NOT = IN-OWNER-REC-NAME
MOVE O TO OUT-CODE
MOVE "NON MATCHING SET OWNERS RECORD TYPES"
TO MESG-DESC
CALL "UERROR" USING MESG-DESC
EXIT

}
IF NOT OK
GO TO NDML-ERROR.

AFTER-LOOP.

® % N % »

RETURN

EXIT-PROGRAM.
*

*

EXIT PROGRAM.

NDML-ERROR.

*
*
*
b

COPY ERRPRO OF IISSCLIB.
/

MOVE NDML-STATUS TO RET-STATUS.

MOVE °‘NDML ERROR TRAPPED' TO MESG-DESC.
PERFORM PROCESS-ERROR.

GO TO AFTER-LOOP.

PROCESS ERROR

Plac™S ey

aaoaaaaa

10

200

Cc

C#
C#
C#
C#
C#

PRM620141200
1 November 1985

APPENDIX C
FORTRAN EXAMPLE PROGRAM

PROGRAM CDTS8

APPLICATION PROCESS CDTS8

AN EXAMPLE OF AN APPLICATION PROCESS
CONTAINING A NESTED NDML QUERY.

CHARACTER ECNAME*30,AUCNAM*30

CHARACTER V1*30,V4*30

INTEGER V5,V6,V8

INTEGER V2,V3,V7,NTMBSZ

DATA NTMBSZ /4096/

CHARACTER NTMBUF*4096,TERMID*2,NTMSTS*1,RETCOD*S

............................

CALL INITAL (%REF(NTMBUF),
%REF(NTMBSZ),
%REF(SYSSTS),
%REF(RETCOD))

IF (RETCOD .NE. 'O0000') THEN

PRINT *, 'BAD INITAL'
CALL TRMNAT (%REF(NTMSTS))

ENDIF

O CONTINUE
PRINT *, 'ENTER ENTITY CLASS LABEL’
READ (UNIT=5,FMT=200) ECNAME
FORMAT (A20)
IF (ECNAME .EQ. 'EXIT’') GO TO 900

SELECT :V1 = R.EC_LABEL :V2 = R.EC_NO
:V3 = R.DEP _EC_NO :V4 = R.RC_LABEL
FROM RELATION XREF "R
WHERE R. EC_LABEL = :ECNAME

PRINT *, 'ENTITY CLASS LABEL ,V1
PRINT *, 'ENTITY CLASS NUMBER ",V
PRINT *, 'DEPENDENT ENTITY CLASS :',V3
PRINT *, 'RELATION CLASS LABEL ,V4
PRINT *, " ’

g

»

4

v

v,

°t

2

PRM620141200 :

1 November 1985 !

.

1

C# SELECT :V1 = I.EC_LABEL :V2 = I.EC_NO p

C# :VS5 = I.TAG_NO :V6 = I.TAG INHER

C# :V7 = I.IND_EC_NO !

(o] 3 FROM IAUC_XREF I 3

C# WHERE I.IND_EC_NO = :V2 -

C# AND I.EC_NO = :V3 h

(o 3 AND I.RC_LABEL = :V4 ¢

C# { !
PRINT *,’ DEPENDENT ENTITY CLASS LABEL:',Vl1

PRINT *,’' DEPENDENT ENTITY CLASS NUMBER :’',V2)

PRINT *,’ ATTRIBUTE USE CLASS NUMBER :',V5 .

PRINT *,° INHERITED FROM AUC RUMBER 2 ,V6 :

PRINT *,° INHERITED FROM EC NUMBER :,V7 Ny

PRINT *,' ' i

C# } .

C# } N

GO TO 100 .

C i,

900 CONTINUE 3

CALL TRMNAT (%REF(NTMSTS)) "

END (

B o e o

-
.

- . e

L AP !

gy

O i e JE R

b S

oy \ %] a P, (%> ™ " h® BT N "L T LN e T W N T o o
“3.“""“"!."""5"“" AL At x ..O!‘.O. L e L U T LA S A% '.o. k‘l. 10 S I R RN AT Ralall

PRM620141200
1 November 1985

APPERDIX D
K REFERENCES
< Related ICAM Documents included:
UM62014100 CDM Administrator'’'s Manual

TBM620141000 CDM1, An IDEF1 Model of the Common Data Model

UM620141002 Information Modeling Manual - IDEFl-Extended
; (IDEF1X)

UM620141100 Neutral Data Definition Language (NDDL) User's
Guide

DS620141200 Development Specification for the IISS NDML
Precompiler Configuration Item

DS620141320 Development Specification for the IISS
Aggregator Configuration Item

DS620141310 Development Specification for the IISS
Distributed Request Supervisor Configuration
Item

U S.Govermment Panting Oftue 1987 A% UG GOKBRA

